Design Models for the Development of Helium-Carbon Sorption Cryocoolers

C. A. LINDENSMITH, M. AHART*, P. BHANDARI, L. A. Wade, PAINE, C. G., Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA,

We have developed models for predicting the performance of helium-based Joule-Thomson continuous-flow cryocoolers using charcoal-pumped sorption compressors. The models take as inputs the number of compressors, desired heat-lift, cold tip temperature, and available precooling temperature and provide design parameters as outputs. Future laboratory development will be used to verify and improve the models. We will present a preliminary design for a two-stage vibration-free cryocooler that is being proposed as part of a mid-infrared camera on NASA's Next Generation Space Telescope. Model predictions show that a 10 mW helium-carbon cryocooler with a base temperature of 5.5 K will reject less than 650 mW at 18 K. The total input power to the helium-carbon stage is 650 mW. These models, which run in MathCad and Microsoft Excel, can be coupled to similar models for hydrogen sorption coolers to give designs for 2-stage vibration-free cryocoolers that provide cooling from ~50 K to 4 K.

*This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.
*Present Address: Princeton University, Princeton, NJ, USA.

Sortable Author List	Lindensmith, C.A.; Bhandari, P.; Ahart, M.;
	Wade, L. A.; Paine, C. G.
Sorting Category	CEC-13
Presentation Preference	Poster
The corresponding author	Chris Lindensmith
	Jet Propulsion Laboratory
	Mail Stop 79-24
	4800 Oak Grove Dr.
	Pasadena, CA 91109-8099
Phone	(818) 354-6697
Email	chrisl@squid.jpl.nasa.gov
Review category	CEC-13